Microsoft Foundry quickstart
This article refers to the Microsoft Foundry (new) portal.
Prerequisites
- A model deployed in Microsoft Foundry. If you don’t have a model, first complete Quickstart: Set up Microsoft Foundry resources.
- The required language runtimes, global tools, and Visual Studio Code extensions as described in Prepare your development environment.
Set environment variables and get the code
Store your project endpoint as an environment variable. Also set these values for use in your scripts.Copy
Ask AI
PROJECT_ENDPOINT=<endpoint copied from welcome screen>
AGENT_NAME="MyAgent"
MODEL_DEPLOYMENT_NAME="gpt-4.1-mini"
- Python
- C#
- TypeScript
- Java
- REST API
- Foundry portal
Follow along below or get the code:Sign in using the CLI
Get the code
az login command to authenticate before running your Python scripts.Follow along below or get the code:Sign in using the CLI
Get the code
az login command to authenticate before running your C# scripts.Follow along below or get the code:Sign in using the CLI
Get the code
az login command to authenticate before running your TypeScript scripts.Follow along below or get the code:Sign in using the CLI
Get the code
az login command to authenticate before running your Java scripts.Follow along below or get the code:
Get the code
-
Sign in using the CLI
az logincommand to authenticate before running the next command. -
Get a temporary access token. It will expire in 60-90 minutes, you’ll need to refresh after that.
CopyAsk AI
az account get-access-token --scope https://ai.azure.com/.default -
Save the results as the environment variable
AZURE_AI_AUTH_TOKEN.
No code is necessary when using the Foundry portal.
Install and authenticate
Make sure you install the correct preview/prerelease version of the packages as shown here.- Python
- C#
- TypeScript
- Java
- REST API
- Foundry portal
-
Install these packages, including the preview version of
azure-ai-projects. This version uses the Foundry projects (new) API (preview).CopyAsk AIpip install azure-ai-projects --pre pip install openai azure-identity python-dotenv -
Sign in using the CLI
az logincommand to authenticate before running your Python scripts.
-
Install packages:
Add NuGet packages using the .NET CLI in the integrated terminal: These packages use the Foundry projects (new) API (preview).
CopyAsk AI
dotnet add package Azure.AI.Projects --prerelease dotnet add package Azure.AI.Projects.OpenAI --prerelease dotnet add package Azure.Identity -
Sign in using the CLI
az logincommand to authenticate before running your C# scripts.
-
Install these packages, including the preview version of
@azure/ai-projects. This version uses the Foundry projects (new) API (preview).:CopyAsk AInpm install @azure/ai-projects@beta @azure/identity dotenv -
Sign in using the CLI
az logincommand to authenticate before running your TypeScript scripts.
- Sign in using the CLI
az logincommand to authenticate before running your Java scripts.
-
Sign in using the CLI
az logincommand to authenticate before running the next command. -
Get a temporary access token. It will expire in 60-90 minutes, you’ll need to refresh after that.
CopyAsk AI
az account get-access-token --scope https://ai.azure.com/.default -
Save the results as the environment variable
AZURE_AI_AUTH_TOKEN.
No installation is necessary to use the Foundry portal.
Code uses Azure AI Projects 2.x (preview) and is incompatible with Azure AI Projects 1.x. Switch to Foundry (classic) documentation for the Azure AI Projects 1.x GA version.
Chat with a model
Interacting with a model is the basic building block of AI applications. Send an input and receive a response from the model:- Python
- TypeScript
- Java
- REST API
- Foundry portal
Copy
Ask AI
import os
from dotenv import load_dotenv
from azure.identity import DefaultAzureCredential
from azure.ai.projects import AIProjectClient
load_dotenv()
print(f"Using PROJECT_ENDPOINT: {os.environ['PROJECT_ENDPOINT']}")
print(f"Using MODEL_DEPLOYMENT_NAME: {os.environ['MODEL_DEPLOYMENT_NAME']}")
project_client = AIProjectClient(
endpoint=os.environ["PROJECT_ENDPOINT"],
credential=DefaultAzureCredential(),
)
openai_client = project_client.get_openai_client()
response = openai_client.responses.create(
model=os.environ["MODEL_DEPLOYMENT_NAME"],
input="What is the size of France in square miles?",
)
print(f"Response output: {response.output_text}")
C#
Copy
Ask AI
using Azure.AI.Projects;
using Azure.AI.Projects.OpenAI;
using Azure.Identity;
using OpenAI.Responses;
#pragma warning disable OPENAI001
string projectEndpoint = Environment.GetEnvironmentVariable("PROJECT_ENDPOINT")
?? throw new InvalidOperationException("Missing environment variable 'PROJECT_ENDPOINT'");
string modelDeploymentName = Environment.GetEnvironmentVariable("MODEL_DEPLOYMENT_NAME")
?? throw new InvalidOperationException("Missing environment variable 'MODEL_DEPLOYMENT_NAME'");
AIProjectClient projectClient = new(new Uri(projectEndpoint), new AzureCliCredential());
ProjectResponsesClient responseClient = projectClient.OpenAI.GetProjectResponsesClientForModel(modelDeploymentName);
ResponseResult response = await responseClient.CreateResponseAsync("What is the size of France in square miles?");
Console.WriteLine(response.GetOutputText());
Copy
Ask AI
import { DefaultAzureCredential } from "@azure/identity";
import { AIProjectClient } from "@azure/ai-projects";
import "dotenv/config";
const projectEndpoint = process.env["PROJECT_ENDPOINT"] || "<project endpoint>";
const deploymentName = process.env["MODEL_DEPLOYMENT_NAME"] || "<model deployment name>";
async function main(): Promise<void> {
const project = new AIProjectClient(projectEndpoint, new DefaultAzureCredential());
const openAIClient = await project.getOpenAIClient();
const response = await openAIClient.responses.create({
model: deploymentName,
input: "What is the size of France in square miles?",
});
console.log(`Response output: ${response.output_text}`);
}
main().catch(console.error);
Copy
Ask AI
package com.azure.ai.agents;
import com.azure.core.util.Configuration;
import com.azure.identity.DefaultAzureCredentialBuilder;
import com.openai.models.responses.Response;
import com.openai.models.responses.ResponseCreateParams;
public class CreateResponse {
public static void main(String[] args) {
String endpoint = Configuration.getGlobalConfiguration().get("PROJECT_ENDPOINT");
String model = Configuration.getGlobalConfiguration().get("MODEL_DEPLOYMENT_NAME");
// Code sample for creating a response
ResponsesClient responsesClient = new AgentsClientBuilder()
.credential(new DefaultAzureCredentialBuilder().build())
.endpoint(endpoint)
.serviceVersion(AgentsServiceVersion.V2025_11_15_PREVIEW)
.buildResponsesClient();
ResponseCreateParams responseRequest = new ResponseCreateParams.Builder()
.input("Hello, how can you help me?")
.model(model)
.build();
Response response = responsesClient.getResponseService().create(responseRequest);
System.out.println("Response ID: " + response.id());
System.out.println("Response Model: " + response.model());
System.out.println("Response Created At: " + response.createdAt());
System.out.println("Response Output: " + response.output());
}
}
Replace
YOUR-FOUNDRY-RESOURCE-NAME with your values:Copy
Ask AI
curl -X POST https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/openai/responses?api-version=2025-11-15-preview \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $AZURE_AI_AUTH_TOKEN" \
-d '{
"model": "gpt-4.1-mini",
"input": "What is the size of France in square miles?"
}'
- After the model deploys, you’re automatically moved from Home to the Build section. Your new model is selected and ready for you to try out.
- Start chatting with your model, for example, “Write me a poem about flowers.”
Code uses Azure AI Projects 2.x (preview) and is incompatible with Azure AI Projects 1.x. Switch to Foundry (classic) documentation for the Azure AI Projects 1.x GA version.
Create an agent
Create an agent using your deployed model. An agent defines core behavior. Once created, it ensures consistent responses in user interactions without repeating instructions each time. You can update or delete agents anytime.- Python
- C#
- TypeScript
- Java
- REST API
- Foundry portal
Copy
Ask AI
import os
from dotenv import load_dotenv
from azure.identity import DefaultAzureCredential
from azure.ai.projects import AIProjectClient
from azure.ai.projects.models import PromptAgentDefinition
load_dotenv()
project_client = AIProjectClient(
endpoint=os.environ["PROJECT_ENDPOINT"],
credential=DefaultAzureCredential(),
)
agent = project_client.agents.create_version(
agent_name=os.environ["AGENT_NAME"],
definition=PromptAgentDefinition(
model=os.environ["MODEL_DEPLOYMENT_NAME"],
instructions="You are a helpful assistant that answers general questions",
),
)
print(f"Agent created (id: {agent.id}, name: {agent.name}, version: {agent.version})")
Copy
Ask AI
using Azure.AI.Projects;
using Azure.AI.Projects.OpenAI;
using Azure.Identity;
string projectEndpoint = Environment.GetEnvironmentVariable("PROJECT_ENDPOINT")
?? throw new InvalidOperationException("Missing environment variable 'PROJECT_ENDPOINT'");
string modelDeploymentName = Environment.GetEnvironmentVariable("MODEL_DEPLOYMENT_NAME")
?? throw new InvalidOperationException("Missing environment variable 'MODEL_DEPLOYMENT_NAME'");
string agentName = Environment.GetEnvironmentVariable("AGENT_NAME")
?? throw new InvalidOperationException("Missing environment variable 'AGENT_NAME'");
AIProjectClient projectClient = new(new Uri(projectEndpoint), new AzureCliCredential());
AgentDefinition agentDefinition = new PromptAgentDefinition(modelDeploymentName)
{
Instructions = "You are a helpful assistant that answers general questions",
};
AgentVersion newAgentVersion = projectClient.Agents.CreateAgentVersion(
agentName,
options: new(agentDefinition));
List<AgentVersion> agentVersions = [..projectClient.Agents.GetAgentVersions(agentName)];
foreach (AgentVersion agentVersion in agentVersions)
{
Console.WriteLine($"Agent: {agentVersion.Id}, Name: {agentVersion.Name}, Version: {agentVersion.Version}");
}
Copy
Ask AI
import { DefaultAzureCredential } from "@azure/identity";
import { AIProjectClient } from "@azure/ai-projects";
import "dotenv/config";
const projectEndpoint = process.env["PROJECT_ENDPOINT"] || "<project endpoint>";
const deploymentName = process.env["MODEL_DEPLOYMENT_NAME"] || "<model deployment name>";
async function main(): Promise<void> {
const project = new AIProjectClient(projectEndpoint, new DefaultAzureCredential());
const agent = await project.agents.createVersion("my-agent-basic", {
kind: "prompt",
model: deploymentName,
instructions: "You are a helpful assistant that answers general questions",
});
console.log(`Agent created (id: ${agent.id}, name: ${agent.name}, version: ${agent.version})`);
}
main().catch(console.error);
Copy
Ask AI
package com.azure.ai.agents;
import com.azure.ai.agents.models.AgentVersionDetails;
import com.azure.ai.agents.models.PromptAgentDefinition;
import com.azure.core.util.Configuration;
import com.azure.identity.DefaultAzureCredentialBuilder;
public class CreateAgent {
public static void main(String[] args) {
String endpoint = Configuration.getGlobalConfiguration().get("PROJECT_ENDPOINT");
String model = Configuration.getGlobalConfiguration().get("MODEL_DEPLOYMENT_NAME");
// Code sample for creating an agent
AgentsClient agentsClient = new AgentsClientBuilder()
.credential(new DefaultAzureCredentialBuilder().build())
.endpoint(endpoint)
.buildAgentsClient();
PromptAgentDefinition request = new PromptAgentDefinition(model);
AgentVersionDetails agent = agentsClient.createAgentVersion("MyAgent", request);
System.out.println("Agent ID: " + agent.getId());
System.out.println("Agent Name: " + agent.getName());
System.out.println("Agent Version: " + agent.getVersion());
}
}
Replace
YOUR-FOUNDRY-RESOURCE-NAME with your values:Copy
Ask AI
curl -X POST https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/agents?api-version=2025-11-15-preview \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $AZURE_AI_AUTH_TOKEN" \
-d '{
"name": "MyAgent",
"definition": {
"kind": "prompt",
"model": "gpt-4.1-mini",
"instructions": "You are a helpful assistant that answers general questions"
}
}'
Now create an agent and interact with it.
- Still in the Build section, select Agents in the left pane.
- Select Create agent and give it a name.
Code uses Azure AI Projects 2.x (preview) and is incompatible with Azure AI Projects 1.x. Switch to Foundry (classic) documentation for the Azure AI Projects 1.x GA version.
Chat with an agent
Use the previously created agent named “MyAgent” to interact by asking a question and a related follow-up. The conversation maintains history across these interactions.- Python
- C#
- TypeScript
- Java
- REST API
- Foundry portal
Copy
Ask AI
import os
from dotenv import load_dotenv
from azure.identity import DefaultAzureCredential
from azure.ai.projects import AIProjectClient
load_dotenv()
project_client = AIProjectClient(
endpoint=os.environ["PROJECT_ENDPOINT"],
credential=DefaultAzureCredential(),
)
agent_name = os.environ["AGENT_NAME"]
openai_client = project_client.get_openai_client()
# Optional Step: Create a conversation to use with the agent
conversation = openai_client.conversations.create()
print(f"Created conversation (id: {conversation.id})")
# Chat with the agent to answer questions
response = openai_client.responses.create(
conversation=conversation.id, #Optional conversation context for multi-turn
extra_body={"agent": {"name": agent_name, "type": "agent_reference"}},
input="What is the size of France in square miles?",
)
print(f"Response output: {response.output_text}")
# Optional Step: Ask a follow-up question in the same conversation
response = openai_client.responses.create(
conversation=conversation.id,
extra_body={"agent": {"name": agent_name, "type": "agent_reference"}},
input="And what is the capital city?",
)
print(f"Response output: {response.output_text}")
Copy
Ask AI
using Azure.AI.Projects;
using Azure.AI.Projects.OpenAI;
using Azure.Identity;
using OpenAI.Responses;
#pragma warning disable OPENAI001
string projectEndpoint = Environment.GetEnvironmentVariable("PROJECT_ENDPOINT")
?? throw new InvalidOperationException("Missing environment variable 'PROJECT_ENDPOINT'");
string modelDeploymentName = Environment.GetEnvironmentVariable("MODEL_DEPLOYMENT_NAME")
?? throw new InvalidOperationException("Missing environment variable 'MODEL_DEPLOYMENT_NAME'");
string agentName = Environment.GetEnvironmentVariable("AGENT_NAME")
?? throw new InvalidOperationException("Missing environment variable 'AGENT_NAME'");
AIProjectClient projectClient = new(new Uri(projectEndpoint), new AzureCliCredential());
// Optional Step: Create a conversation to use with the agent
ProjectConversation conversation = projectClient.OpenAI.Conversations.CreateProjectConversation();
ProjectResponsesClient responsesClient = projectClient.OpenAI.GetProjectResponsesClientForAgent(
defaultAgent: agentName,
defaultConversationId: conversation.Id);
// Chat with the agent to answer questions
ResponseResult response = responsesClient.CreateResponse("What is the size of France in square miles?");
Console.WriteLine(response.GetOutputText());
// Optional Step: Ask a follow-up question in the same conversation
response = responsesClient.CreateResponse("And what is the capital city?");
Console.WriteLine(response.GetOutputText());
Copy
Ask AI
import { DefaultAzureCredential } from "@azure/identity";
import { AIProjectClient } from "@azure/ai-projects";
import "dotenv/config";
const projectEndpoint = process.env["PROJECT_ENDPOINT"] || "<project endpoint>";
const deploymentName = process.env["MODEL_DEPLOYMENT_NAME"] || "<model deployment name>";
async function main(): Promise<void> {
const project = new AIProjectClient(projectEndpoint, new DefaultAzureCredential());
const openAIClient = await project.getOpenAIClient();
// Create agent
console.log("Creating agent...");
const agent = await project.agents.createVersion("my-agent-basic", {
kind: "prompt",
model: deploymentName,
instructions: "You are a helpful assistant that answers general questions",
});
console.log(`Agent created (id: ${agent.id}, name: ${agent.name}, version: ${agent.version})`);
// Create conversation with initial user message
// You can save the conversation ID to database to retrieve later
console.log("\nCreating conversation with initial user message...");
const conversation = await openAIClient.conversations.create({
items: [
{ type: "message", role: "user", content: "What is the size of France in square miles?" },
],
});
console.log(`Created conversation with initial user message (id: ${conversation.id})`);
// Generate response using the agent
console.log("\nGenerating response...");
const response = await openAIClient.responses.create(
{
conversation: conversation.id,
},
{
body: { agent: { name: agent.name, type: "agent_reference" } },
},
);
console.log(`Response output: ${response.output_text}`);
// Clean up
console.log("\nCleaning up resources...");
await openAIClient.conversations.delete(conversation.id);
console.log("Conversation deleted");
await project.agents.deleteVersion(agent.name, agent.version);
console.log("Agent deleted");
}
main().catch(console.error);
Copy
Ask AI
package com.azure.ai.agents;
import com.azure.ai.agents.models.AgentReference;
import com.azure.ai.agents.models.AgentVersionDetails;
import com.azure.ai.agents.models.PromptAgentDefinition;
import com.azure.identity.AuthenticationUtil;
import com.azure.identity.DefaultAzureCredentialBuilder;
import com.openai.azure.AzureOpenAIServiceVersion;
import com.openai.azure.AzureUrlPathMode;
import com.openai.client.OpenAIClient;
import com.openai.client.okhttp.OpenAIOkHttpClient;
import com.openai.credential.BearerTokenCredential;
import com.openai.models.conversations.Conversation;
import com.openai.models.conversations.items.ItemCreateParams;
import com.openai.models.responses.EasyInputMessage;
import com.openai.models.responses.Response;
import com.openai.models.responses.ResponseCreateParams;
public class ChatWithAgent {
public static void main(String[] args) {
String endpoint = Configuration.getGlobalConfiguration().get("AZURE_AGENTS_ENDPOINT");
String agentName = "MyAgent";
AgentsClient agentsClient = new AgentsClientBuilder()
.credential(new DefaultAzureCredentialBuilder().build())
.endpoint(endpoint)
.buildAgentsClient();
AgentDetails agent = agentsClient.getAgent(agentName);
Conversation conversation = conversationsClient.getConversationService().create();
conversationsClient.getConversationService().items().create(
ItemCreateParams.builder()
.conversationId(conversation.id())
.addItem(EasyInputMessage.builder()
.role(EasyInputMessage.Role.SYSTEM)
.content("You are a helpful assistant that speaks like a pirate.")
.build()
).addItem(EasyInputMessage.builder()
.role(EasyInputMessage.Role.USER)
.content("Hello, agent!")
.build()
).build()
);
AgentReference agentReference = new AgentReference(agent.getName()).setVersion(agent.getVersion());
Response response = responsesClient.createWithAgentConversation(agentReference, conversation.id());
OpenAIClient client = OpenAIOkHttpClient.builder()
.baseUrl(endpoint.endsWith("/") ? endpoint + "openai" : endpoint + "/openai")
.azureUrlPathMode(AzureUrlPathMode.UNIFIED)
.credential(BearerTokenCredential.create(AuthenticationUtil.getBearerTokenSupplier(
new DefaultAzureCredentialBuilder().build(), "https://ai.azure.com/.default")))
.azureServiceVersion(AzureOpenAIServiceVersion.fromString("2025-11-15-preview"))
.build();
ResponseCreateParams responseRequest = new ResponseCreateParams.Builder()
.input("Hello, how can you help me?")
.model(model)
.build();
Response result = client.responses().create(responseRequest);
}
}
Replace
YOUR-FOUNDRY-RESOURCE-NAME with your values:Copy
Ask AI
# Optional Step: Create a conversation to use with the agent
curl -X POST https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/openai/conversations?api-version=2025-11-15-preview \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $AZURE_AI_AUTH_TOKEN" \
-d '{}'
# Lets say Conversation ID created is conv_123456789. Use this in the next step
#Chat with the agent to answer questions
curl -X POST https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/openai/responses?api-version=2025-11-15-preview \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $AZURE_AI_AUTH_TOKEN" \
-d '{
"agent": {"type": "agent_reference", "name": "MyAgent"},
"conversation" : "<YOUR_CONVERSATION_ID>",
"input" : "What is the size of France in square miles?"
}'
#Optional Step: Ask a follow-up question in the same conversation
curl -X POST https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/openai/responses?api-version=2025-11-15-preview \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $AZURE_AI_AUTH_TOKEN" \
-d '{
"agent": {"type": "agent_reference", "name": "MyAgent"},
"conversation" : "<YOUR_CONVERSATION_ID>",
"input" : "And what is the capital city?"
}'
Interact with your agent.
- Add instructions, such as, “You are a helpful writing assistant.”
- Start chatting with your agent, for example, “Write a poem about the sun.”
- Follow up with “How about a haiku?”
Code uses Azure AI Projects 2.x (preview) and is incompatible with Azure AI Projects 1.x. Switch to Foundry (classic) documentation for the Azure AI Projects 1.x GA version.
Clean up resources
If you no longer need any of the resources you created, delete the resource group associated with your project.- In the Azure portal, select the resource group, and then select Delete. Confirm that you want to delete the resource group.